Main Article Content

Abstract

ZnPtO is widely used as an active substance in anti-dandruff shampoo. Instead of describing its benefits, many articles have reported that ZnPtO can harm the environment and human health. Through the Food and Drugs Administration, Indonesia has been regulated to have a maximum limit of 2.0% for rinse-off hair products. The research aims to develop an accurate and reliable method to determine product ZnPtO level. ZnPtO was analyzed using High-Performance Liquid Chromatography (HPLC) with Photo Diode Array (PDA) at a wavelength of 257.9 nm. This research used a C18 column with dimensions of 250 x 4.6 nm and five μm in particle size. The mobile phase consisted of acetonitrile and a mixture of potassium dihydrogen phosphate solution and disodium EDTA at pH 4.0 (30:70). Column temperature was maintained at 40oC at a 1.0 ml/min flow rate.  The results showed that ZnPtO was detected at a retention time of 7 minutes. The method's correlation coefficient and residual deviation were 0.999% and 0.65%, respectively. Method precision at 20, 100, and 160 μg/ml was 0.6694, 0.4511, and 0.4728%, respectively. Method accuracy at those levels was 98.3 to 100.9%. All validation parameters have fulfilled the qualification. ZnPtO levels contained in anti-dandruff shampoos were 0.0081%, 0.0040%, and 0.016%, respectively. The developed method has proven selective, accurate, and reliable. It can control the quality and safety of anti-dandruff shampoo due to pre-market and post-market surveillance.

Keywords

Zinc pyrithione HPLC-PDA method validation Zink pirition KCKT-PDA metode validasi

Article Details

How to Cite
Zahara, Z., Kurniawati, F., & Lusianti, E. (2024). Analysis of ZnPtO in Anti-dandruff Shampoo by High-Performance Liquid Chromatography - Photo Diode Array. Eruditio : Indonesia Journal of Food and Drug Safety, 4(2), 166–175. https://doi.org/10.54384/eruditio.v4i2.175

References

  1. AOAC Internacional. (2023). Appendix K: Guidelines for Dietary Supplements and Botanicals - Part I AOAC Guidelines for Single-Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. In Official Method of Analysis of AOAC International - Appendix K Guidelines for Dietary Supplements and Botanicals (Issue 22). https://doi.org/10.1093/9780197610145.005.011
  2. BPOM RI. (2022). Peraturan Badan Pengawas Obat Dan Makanan Nomor 17 Tahun 2022 Tentang Perubahan Atas Peraturan Badan Pengawas Obat Dan Makanan Nomor 23 Tahun 2019 Tentang Persyaratan Teknis Bahan Kosmetika Dengan. Bpom RI, 11, 1–16.
  3. Chen, G., Miao, M., Hoptroff, M., Fei, X., Collins, L. Z., Jones, A., & Janssen, H. G. (2015). Sensitive and simultaneous quantification of zinc pyrithione and climbazole deposition from anti-dandruff shampoos onto the human scalp. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1003, 22–26. https://doi.org/10.1016/j.jchromb.2015.09.009
  4. Das, S., & Khubdikar, K. (2019). A simple and facile spectrophotometric tool for quantification of zinc pyrithione (ZPT) in suspension. Chemical Data Collections, 19, 100175. https://doi.org/10.1016/j.cdc.2018.100175
  5. Egurrola, G. E., Mazabel, A. P., & García, J. (2021). Development and Validation of a Complexometric and Potentiometric Titration Method for the Quantitative Determination of Zinc Pyrithione in Shampoo. Journal of Analytical Methods in Chemistry, 2021, 0–4. https://doi.org/10.1155/2021/6661744
  6. Fenn, R. J., & Alexander, M. T. (1988). Determination of zinc pyrithione in hair care products by normal phase liquid chromatography. Journal of Liquid Chromatography, 11(16), 3403–3413. https://doi.org/10.1080/01483918808082263
  7. Gagliardi, L., Multari, G., Cavazzutti, G., De Orsi, D., & Tonelli, D. (1998). HPLC determination of ciclopirox, octopirox, and pyrithiones in pharmaceuticals and antidandruff preparations. Journal of Liquid Chromatography and Related Technologies, 21(15), 2365–2373. https://doi.org/10.1080/10826079808000544
  8. George, N. M., & Potlapati, A. (2021). Shampoo, conditioner and hair washing. International Journal of Research in Dermatology, 8(1), 185. https://doi.org/10.18203/issn.2455-4529.intjresdermatol20214930
  9. Gu, Y. X., Wang, Q. H., Zhou, Z. L., Lv, Q., & Mai, C. H. (2014). Determination of zinc pyrithione in shampoos by HPLC and HPLC-MS/MS. Journal of Cosmetic Science, 65(5), 265–276.
  10. Indrayanto, G. (2018). Validation of Chromatographic Methods of Analysis: Application for Drugs That Derived From Herbs. In Profiles of Drug Substances, Excipients and Related Methodology (1st ed., Vol. 43). Elsevier Inc. https://doi.org/10.1016/bs.podrm.2018.01.003
  11. Kachchhi, R. R., Patel, D. R., Patel, A. B., Patel, K. S., & Patel, S. C. (2020). Stability Indicating Chromatographic Method Development and Validation of Sertaconazole nitrate and Zinc pyrithione in Shampoo. 8(4), 2566–2585.
  12. Kepala Badan Pengawas Obat dan Makanan (BPOM). (2023). Keputusan Kepala Badan Pengawas Obat dan Makanan Nomor 479 Tahun 2023 tentang Perubahan Bahan yang Diizinkan dalam Kosmetik. 1–243.
  13. Kim, T. H., Jung, G. H., Lee, E. H., Park, H. R., Lee, J. K., & Kim, H. G. (2018). Development and validation of liquid chromatography–tandem mass spectrometry method for simultaneous determination of zinc pyrithione and pyrithione in shampoos. Acta Chromatographica, 30(3), 200–205. https://doi.org/10.1556/1326.2017.00294
  14. Leong, C., Wang, J., Toi, M. J., Lam, Y. I., Goh, J. P. Z., Lee, M., & Dawson, T. L. (2020). Brief Report Effect of zinc pyrithione shampoo treatment on skin commensal Malassezia. 1–4. https://doi.org/10.1093/mmy/myaa068
  15. Mangion, S. E., Holmes, A. M., & Roberts, M. S. (2021). Targeted delivery of zinc pyrithione to skin epithelia. International Journal of Molecular Sciences, 22(18), 1–30. https://doi.org/10.3390/ijms22189730
  16. Mildau, G. (2018). General Review of Official Methods of Analysis of Cosmetics. In Analysis of Cosmetic Products: Second Edition (Second Edi). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63508-2.00004-7
  17. Nakajima, K., Yasuda, T., & Nakazawa, H. (1990). High-performance liquid chromatographic determination of zinc pyrithione in antidandruff preparations based on copper chelate formation. Journal of Chromatography A, 502(C), 379–384. https://doi.org/10.1016/S0021-9673(01)89602-3
  18. Park, C. Y., Moon, S., Baek, S. H., Kim, M. W., Roh, J., Sung, J., & Park, T. J. (2020). Development of Detection Methods for Zinc Pyrithione in Polypropylene via Simple Extraction Methods for Quality Control. Biochip Journal, 14(2), 211–217. https://doi.org/10.1007/s13206-020-4210-7
  19. Pertiwi, O. N., Aryani, R., Cahya, G., & Darma, E. (2020). Kajian Efektivitas Penggunaan Zinc Pyrithione dalam Sediaan Sampo Antiketombe. Prosiding Farmasi, 2(2), 861–865.
  20. Pham Ngoc Thuy, V., Hung, T. V., Thang, P. N. T., Dang-Bao, T., & Anh, T. T. K. (2021). Determination of Methylisothiazolinone and Methylchloroisothiazolinone in personal care products by HPLC-DAD. IOP Conference Series: Earth and Environmental Science, 947(1). https://doi.org/10.1088/1755-1315/947/1/012022
  21. SCCS. (2020). Opinion on Zinc Pyrithione (ZPT) - (CAS No 13463-41-7) - Submission III - Scientific Committee on Consumer Safety. 13463. https://health.ec.europa.eu/publications/zinc-pyrithione-zpt-submission-iii_en
  22. Sharma, G. K., Gadiya, J., & Dhanawat, M. (2018). Textbook of Cosmetic Formulations (Pothi), ISBN: 9781365355912. May.
  23. Tomás, M., Agonia, A. S., Borges, L., de Oliveira, A. P., & de Oliveira, R. P. (2020). Isothiazolinones quantification in shampoo matrices: A matter of method optimization or stability driven by interactions? Cosmetics, 7(1). https://doi.org/10.3390/cosmetics7010004
  24. Turner, G. A., Matheson, J. R., Li, G. Z., Fei, X. Q., Zhu, D., & Baines, F. L. (2013). Enhanced efficacy and sensory properties of an anti-dandruff shampoo containing zinc pyrithione and climbazole. International Journal of Cosmetic Science, 35(1), 78–83. https://doi.org/10.1111/ics.12007
  25. Yuwono, M., & Indrayanto, G. (2005). Validation of Chromatographic Methods of Analysis. Profiles of Drug Substances, Excipients and Related Methodology, 32(05), 241–260. https://doi.org/10.1016/S0099-5428(05)32009-0

Most read articles by the same author(s)