Main Article Content

Abstract

Kratom (Mitragyna speciosa Korth) has been identified as a New Psychoactive Substance (NPS) by the United Nations Office on Drugs and Crime (UNODC) and included in the list of prohibited ingredients in food supplements and traditional medicine by Indonesian FDA. Therefore, a rapid, easy, and reliable analytical method is necessary to detect and quantify this plant and its products. This study developed a method for the detection and quantification of kratom products based on a unique compound, mitragynine, as a biomarker. A previous survey of determining mitragynine in Kratom using GC-MS, LC-MS/MS, UPLC, and HPLC-PDA. Previously, the HPLC-PDA method used a C8 column. Yet, for efficiency, it is also necessary to develop a test method using a C18 column. Analysis was performed using an HPLC - PDA system with Waters Atlantis T3-C18 (250 x 4.6 mm, 5 µm) column. The mobile phase comprises acetonitrile and formic acid 0.05%, pH 5.0 (75:25 v/v), delivered at a 1.0 mL/min flow rate. Detection was carried out at a wavelength of 225 nm. The analytical method was validated with test parameters of selectivity, system suitability, accuracy, precision, linearity, detection limit, and quantification limit. The validation study demonstrated an excellent linear concentration range of 1.96 - 6.01 µg/mL with a correlation coefficient of 0.9996; the detection limit is 0.14 µg/mL, while the limit of quantification is 0.45 µg/mL—accuracy method of 98.88 - 101.44% and a bias of 0.27%. The percent relative standard deviation for six independent assay determinations was 0.67%, and the intermediate precision was 1.56% on two days. The mitragynine amounts in these materials ranged from 6.01 to 6.31 mg/g of dried leaf material. Based on the research results, it can be concluded that the method developed provides quick, simple, reliable, accurate, and valid, and has an advantage over existing methods in terms of simplicity of sample preparation, short analysis time, and cost-effectiveness compared to GCMS and LCMS/MS and can be applied for future analysis in Kratom samples.

Keywords

Kratom Mitragynine Mitragyna speciosa Detection Quantification HPLC-PDA Kratom Mitraginin Mitragyna speciosa Deteksi Kuantifikasi KCKT-PDA

Article Details

How to Cite
Isnaeni, N., Saefumillah, A., & Cahyana , A. H. (2024). Development and Validation of a Method for Detecting and Quantifying Mitragynine in Kratom Samples Using HPLC-PDA. Eruditio : Indonesia Journal of Food and Drug Safety, 4(2), 130–144. https://doi.org/10.54384/eruditio.v4i2.209

References

  1. AOAC. (2002). AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. AOAC.
  2. Ahuja, S. (2005). Overview: Handbook of pharmaceutical analysis by HPLC. In Separation Science and Technology (Vol. 6, Issue C). https://doi.org/10.1016/S0149-6395(05)80045-5
  3. BNN. (2020). Kratom, Antara Polemik dan Harapan. https://bnn.go.id/kratom-antara-polemik-harapan/ (Accessed: February 5, 2021).
  4. BPOM. (2005). Peraturan Kepala BPOM tahun 2005 tentang Kriteria Dan Tata Laksana Pendaftaran Obat Tradisional, Obat Herbal Terstandar dan Fitofarmaka. Badan Pengawas Obat Dan Makanan, 1–16.
  5. BPOM. (2005). Keputusan Kepala Badan POM tahun 2005 tentang Ketentuan Pokok Pengawasan Suplemen Makanan. Badan Pengawas Obat Dan Makanan, 26. http://www.pom.go.id/pom/hukum_perundangan/pdf/final kep_lampiran.pdf
  6. BPOM. (2016). Surat Edaran Pelarangan Penggunaan Mitragyna speciosa (Kratom) dalam Obat Tradisional dan Suplemen Kesehatan tahun 2016. Badan Pengawas Obat Dan Makanan.
  7. Carpenter, J. M., Criddle, C. A., Craig, H. K., Ali, Z., Zhang, Z., Khan, I. A., & Sufka, K. J. (2016). Comparative effects of Mitragyna speciosa extract, mitragynine, and opioid agonists on thermal nociception in rats. Fitoterapia, 109, 87–90.
  8. https://doi.org/10.1016/j.fitote.2015.12.001
  9. Casey, C. R., Conley, T., Heise, A., Thomas, T., & Ayres, P. R. (2015). Quantitative and Qualitative Analysis of Mitragynine in Kratom ( Mitragyna speciosa ) by GC-MS , LC-MS/MS, and UPLC-PDA. Journal of Regulatory Science, 02, 1–14.
  10. Elsa, L. (2016). Pengembangan Metode Isolasi dan Identifikasi Mitragynine dalam Daun Kratom (Mitragyna speciosa). Jurnal Biosains Pascasarjana, 18(3), 191. https://doi.org/10.20473/jbp.v18i3.2016.191-202
  11. Flores-Bocanegra, L., Raja, H. A., Graf, T. N., Augustinović, M., Wallace, E. D., Hematian, S., Kellogg, J. J., Todd, D. A., Cech, N. B., & Oberlies, N. H. (2020). The Chemistry of Kratom [ Mitragyna speciosa]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. Journal of Natural Products, 83(7), 2165–2177.
  12. https://doi.org/10.1021/acs.jnatprod.0c00257
  13. Fluyau, D., & Revadigar, N. (2017). Biochemical benefits, diagnosis, and clinical risks evaluation of kratom. Frontiers in Psychiatry, 8(APR), 62. https://doi.org/10.3389/fpsyt.2017.00062
  14. Fowble, K. L., & Musah, R. A. (2019). A validated method for the quantification of mitragynine in sixteen commercially available Kratom (Mitragyna speciosa) products. Forensic Science International, 299, 195–202.
  15. https://doi.org/10.1016/j.forsciint.2019.04.009
  16. ICH. (2022). ICH Guideline Q2(R2) on Validation of Analytical Procedures Step 2b. 2(0).
  17. Janchawee, B., Keawpradub, N., Chittrakarn, S., & Prasettho, S. (2007). A high-performance liquid chromatographic method for determination of mitragynine in serum and its application to a pharmacokinetic study in rats. Biomedical Chromatography, 21, 176–183. https://doi.org/10.1002/bmc
  18. Kikura-Hanajiri, R., Kawamura, M., Maruyama, T., Kitajima, M., Takayama, H., & Goda, Y. (2009). Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicology, 27(2), 67–74. https://doi.org/10.1007/s11419-009-0070-5
  19. Lelono, A. A., Latifah, I. L., Herdiawan, H., & Cahyani, R. W. (2021). Extraction and identification of Mitragynine from the Kratom Leaf (Mitragyna speciosa) using HFC-134a subcritical system. IOP Conference Series: Materials Science and Engineering, 1011(1), 012045. https://doi.org/10.1088/1757-899X/1011/1/012045
  20. Lesiak, A. D., Cody, R. B., Dane, A. J., & Musah, R. A. (2014). Rapid detection by direct analysis in real time-mass spectrometry (DART-MS) of psychoactive plant drugs of abuse: The case of Mitragyna speciosa aka “Kratom.” Forensic Science International, 242, 210–218. https://doi.org/10.1016/j.forsciint.2014.07.005
  21. Matsumoto, K. (2006). Pharmacological Studies on 7-Hydroxymitragynine, Isolated from the Thai Herbal Medicine Mitragyna speciosa : Discovery of an Orally Active Opioid Analgesic. Discovery, 85pp.
  22. Moklas, M. A. M., Nurul Raudzah, A. R., Taufik Hidayat, M., Sharida, F., Farah Idayu, N., Zulkhairi, A., & Shamima, A. R. (2008). A Preliminary Toxicity Study of Mitragynine , An Alkaloid from Mitragyna speciosa Korth and its Effects on Locomotor Activity in Rats. Advances in Medical and Dental Sciences, 2(3), 56–60.
  23. Mudge, E. M., & Brown, P. N. (2017). Determination of mitragynine in Mitragyna speciosa raw materials and finished products by liquid chromatography with UV detection: Single-laboratory validation. Journal of AOAC International, 100(1), 18–24. https://doi.org/10.5740/jaoacint.16-0220
  24. Mustafa, R. R., Sukor, R., Mohd Nor, S. M., Saari, N., & Azri, F. A. (2020). Enhancing extraction yield and purity of mitragynine from Mitragyna speciosa through sequential solvent extraction and characterisation using NMR technique. International Journal of Scientific and Technology Research, 9(3), 3846–3854.
  25. Novindriani, D. (2014). Kratom leaf infusion (Mitragyna speciosa) sedative effect test on Balb/C strain male mice. Tanjung Pura University.
  26. Parthasarathy, S., Azizi, J. Bin, Ramanathan, S., Ismail, S., Sasidharan, S., Mohd, M. I., & Mansor, S. M. (2009). Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae family) leaves. Molecules, 14(10), 3964–3974. https://doi.org/10.3390/molecules14103964
  27. Parthasarathy, S., Ramanathan, S., Murugaiyah, V., Hamdan, M. R., Mohd Said, M. I., Lai, C. S., & Mansor, S. M. (2013). A simple HPLC-DAD method for the detection and quantification of psychotropic mitragynine in Mitragyna speciosa (ketum) and its products for the application in forensic investigation. Forensic Science International, 226(1–3), 183–187. https://doi.org/10.1016/j.forsciint.2013.01.014
  28. Prozialeck, W. C., Edwards, J. R., Lamar, P. C., Plotkin, B. J., Sigar, I. M., Grundmann, O., & Veltri, C. A. (2020). Evaluation of the mitragynine content, levels of toxic metals and the presence of microbes in kratom products purchased in the Western Suburbs of Chicago. International Journal of Environmental Research and Public Health, 17(15), 1–13. https://doi.org/10.3390/ijerph17155512
  29. Reanmongkol, W., Keawpradub, N., & Sawangjaroen, K. (2007). Effects of the extracts from Mitragyna speciosa Korth. leaves on analgesic and behavioral activities in experimental animals. Songklanakarin Journal of Science and Technology, 29(SUPPL. 1), 39–48.
  30. Sanagi, M. M., Ayob, M. F. M., Omar, N., Ibrahim, W. A. W., & Hussain, I. (2013). Determination of mitragynine for the identification of mitragyna species in kedah (Malaysia) by gas chromatography-mass spectrometry. Der Pharma Chemica, 5(5), 131–138.
  31. Shamima, A. R., Fakurazi, S., Hidayat, M. T., Hairuszah, I., Moklas, M. A. M., & Arulselvan, P. (2012). Antinociceptive action of isolated mitragynine from Mitragyna speciosa through activation of opioid receptor system. International Journal of Molecular Sciences, 13(9), 11427–11442. https://doi.org/10.3390/ijms130911427
  32. Suhaimi, S.; Kartikasari, D. (2020). Granul Antidiare Test from Kratom Leaf Ethanol Extract (Mytragina speciosa Korth) again to Mice White Male (Mus musculus L). Jurnal Ilmu Kefarmasian Indonesia, 18, 101 – 108.
  33. https://doi.org/Https://doi.org/10.35814/jifi.v18i1.787
  34. Swogger, M. T., & Walsh, Z. (2018). Kratom use and mental health: A systematic review. Drug and Alcohol Dependence, 183 (December 2017), 134–140. https://doi.org/10.1016/j.drugalcdep.2017.10.012
  35. The United States Pharmacopeial. (2020). United State Pharmacopoeia 2020 USP 43-NF 38. In United State Pharmacopoeia (Ed.), United State Pharmacopoeia (42nd-NF 38th ed.). United State Pharmacopoeia.
  36. Tohar, N., Shilpi, J. A., Sivasothy, Y., Ahmad, S., & Awang, K. (2019). Chemical constituents and nitric oxide inhibitory activity of supercritical carbon dioxide extracts from Mitragyna speciosa leaves. Arabian Journal of Chemistry, 12(3), 350–359. https://doi.org/10.1016/j.arabjc.2016.09.005
  37. Yue, K., Kopajtic, T. A., & Katz, J. L. (2018). Abuse liability of mitragynine assessed with a self-administration procedure in rats. Psychopharmacology, 235(10), 2823–2829. https://doi.org/10.1007/s00213-018-4974-9